• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
IGK 2495
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. DFG-Graduiertenkollegs
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall
  1. Friedrich-Alexander-Universität
  2. DFG-Graduiertenkollegs

IGK 2495

Menu Menu schließen
  • Team
  • Research Program
  • Qualification Program
  • NITech
  • Equality
  • PEMSchool
  • Event Calendar
    • Upcoming Events
    • Archive
    Portal Event Calendar
  • Publications
  1. Startseite
  2. Research Program
  3. Project C – Macroscale Continuum Modeling and FE Simulation of Electromechanical Coupling in Perovskite-Based Materials

Project C – Macroscale Continuum Modeling and FE Simulation of Electromechanical Coupling in Perovskite-Based Materials

Bereichsnavigation: Research Program
  • Project A – Electronic Circuits for Piezoelectric Energy Harvesting and Sensor Array Systems
  • Project B – Excitation-Conforming, Shape-Adaptive Mechano-Electrical Energy Conversion
  • Project C – Macroscale Continuum Modeling and FE Simulation of Electromechanical Coupling in Perovskite-Based Materials
  • Project D – Additive Manufacturing of Cellular Lead-Free Ceramics
  • Project E – Lead-Free Perovskite Semiconductors with Tunable Bandgap for Energy Conversion
  • Project F – Room Temperature Aerosol Deposition of Lead-Free Ferroelectric Films for Energy Conversion Systems
  • Project G – Formulation and Crystallization of Perovskite Bearing Glass-Ceramics for Light Management
  • Project H – Stress Modulated Electromechanical Coupling of Lead-Free Ferroelectrics
  • Project I – Growth of Single Crystal Transition Metal Perovskite Chalcogenides
  • Project J – Solution Processed Ferroelectrics in Photovoltaic Devices
  • Project K – Multi-Scale Modeling of Electromechanical Coupling in Perovskite-Based Ferroelectric Materials and Composites
  • Project L – Modeling of Defect and Surface Chemistry of Perovskites
  • Start-up Funding Project - High Throughput Engineering of a Lead-Free Ternary Piezoelectric System for Energy-Harvesting Devices

Project C – Macroscale Continuum Modeling and FE Simulation of Electromechanical Coupling in Perovskite-Based Materials

A piezoelectric vibration-based energy harvester (PVEH) consists of an electromechanical structure and an electric circuit, influencing each other. Mechanical vibrations excite the electromechanical structure. Due to the piezo-electric properties of the material, the mechanical vibrations generate electrical charge changes, which can be stored as electrical energy by the connected electric circuit. The efficiency of the energy harvester depends on many different factors, as the electro-mechanical coupling coefficient of the material, the relation of the excitation frequency to the resonance frequency of the structure or the suitability of the electric circuit.

Macroscopic simulations based on the finite element (FE) method are a promising tool to better understand and optimize the performance of PVEH. To do this, it is necessary to accurately model the electromechanical structure, the circuit, and the coupling between the two. Using the FE method to simulate the electromechanical structure, in contrast to simplified analytical approaches, allows in particular to consider various nonlinearities, e.g. due to the material behavior, large deformations, nonlinear damping or nonlinear electric circuits. Other physical couplings such as pyroelectric behavior or more complex materials such as polymer-ceramic composites can also be considered.

The aim of this project is the macroscale modeling and simulation of PVEH. In the first phase of project C, an FE based system simulation approach for nonlinear electromechanical structures coupled to nonlinear electric circuits was developed. In the second phase of the project, the developed system simulation approach is extended to model the pyroelectric behavior of lead-free ferroelectric materials, e.g. BCZT and KNN. This strongly coupled multiphysical modelling approach is applied to simulate hybrid energy harvesters, which convert at the same time ambient mechanical and thermal energies into electrical energy. In the planned third phase of the project, the coupled material models should be extended to account for nonlinearities and rate-dependencies. Furthermore, the macroscopic piezo- and pyroelectrical properties of polymer-ceramic composites will be modelled and analyzed using numerical homogenization approaches.

 

Principal Investigators

Prof. Dr. Julia Mergheim
Chair of Applied Mechanics
Department of Mechanical Engineering
Friedrich-Alexander-Unversität Erlangen-Nürnberg
julia.mergheim@fau.de
Prof. Dr. Ken-ichi Kakimoto
Life Science and Applied Chemistry Department
Frontier Research Institute for Materials Science
Nagoya Institute of Technology, Japan
kakimoto.kenichi@nitech.ac.jp

 

Doctoral Researchers

 

Michael Schwarz, M.Sc.
Chair of Applied Mechanics
Department of Mechanical Engineering
Friedrich-Alexander-Unversität Erlangen-Nürnberg
michael.stefan.schwarz@fau.de
Ryota Yamamoto, M.Sc.
Frontier Research Institute for Materials Science
Nagoya Institute of Technology, Japan
31411181@stn.nitech.ac.jp

 

Associated Researchers

Dr. Markus Mehnert (FAU): markus.mehnert@fau.de

 

Publications Project C

2024

  • Mehnert M., Moreno Mateos MA., Griwatz JH., Müsse S., Wegner HA., Steinmann P.:
    Experimental and numerical investigation of the photo-mechanical response of azobenzene filled soft elastomers, Part I: Experimental investigations
    In: Extreme Mechanics Letters (2024), S. 102182
    ISSN: 2352-4316
    DOI: 10.1016/j.eml.2024.102182

2023

  • Hegendörfer A., Steinmann P., Mergheim J.:
    Numerical Optimization of a Nonlinear Nonideal Piezoelectric Energy Harvester Using Deep Learning
    In: Journal of Low Power Electronics and Applications 13 (2023), Art.Nr.: 8
    ISSN: 2079-9268
    DOI: 10.3390/jlpea13010008
  • Hegendörfer A., Steinmann P., Mergheim J.:
    An implicitly coupled finite element-electronic circuit simulator method for efficient system simulations of piezoelectric energy harvesters
    In: Journal of Intelligent Material Systems and Structures (2023)
    ISSN: 1045-389X
    DOI: 10.1177/1045389X231157359

2022

  • Hegendörfer A., Steinmann P., Mergheim J.:
    Investigation of a nonlinear piezoelectric energy harvester with advanced electric circuits with the finite element method
    In: SN Applied Sciences 4 (2022), Art.Nr.: 120
    ISSN: 2523-3963
    DOI: 10.1007/s42452-022-05003-1
  • Liu Z., McBride A., Saxena P., Heltai L., Qu Y., Steinmann P.:
    Vibration analysis of piezoelectric Kirchhoff–Love shells based on Catmull–Clark subdivision surfaces
    In: International Journal for Numerical Methods in Engineering (2022)
    ISSN: 0029-5981
    DOI: 10.1002/nme.7010
  • Mehnert M., Faber J., Hossain M., Chester SA., Steinmann P.:
    Experimental and numerical investigations of the electro-mechanical response of particle filled elastomers—Part II: Continuum modeling approach
    In: European Journal of Mechanics A-Solids 96 (2022), Art.Nr.: 104661
    ISSN: 0997-7538
    DOI: 10.1016/j.euromechsol.2022.104661
  • Mehnert M., Faber J., Hossain M., Chester SA., Steinmann P.:
    Experimental and numerical investigation of the electro-mechanical response of particle filled elastomers - Part I: Experimental investigations
    In: European Journal of Mechanics A-Solids 96 (2022), Art.Nr.: 104651
    ISSN: 0997-7538
    DOI: 10.1016/j.euromechsol.2022.104651
  • Mehnert M., Oates W., Steinmann P.:
    Numerical modeling of nonlinear photoelasticity
    In: International Journal for Numerical Methods in Engineering (2022)
    ISSN: 0029-5981
    DOI: 10.1002/nme.7177
  • Yamamoto R., Hegendörfer A., Mergheim J., Kakimoto KI.:
    Temperature-dependent vibration energy harvesting performance of polyimide/(Na,K)NbO3 piezoelectric composites
    In: Japanese Journal of Applied Physics 61 (2022), Art.Nr.: SN1028
    ISSN: 0021-4922
    DOI: 10.35848/1347-4065/ac835c

2021

  • Hegendörfer A., Steinmann P., Mergheim J.:
    Nonlinear finite element system simulation of piezoelectric vibration-based energy harvesters
    In: Journal of Intelligent Material Systems and Structures (2021)
    ISSN: 1045-389X
    DOI: 10.1177/1045389X211048222
  • Mehnert M., Hossain M., Steinmann P.:
    A complete thermo-electro-viscoelastic characterization of dielectric elastomers, Part I: Experimental investigations
    In: Journal of the Mechanics and Physics of Solids (2021), S. 104603
    ISSN: 0022-5096
    DOI: 10.1016/j.jmps.2021.104603
  • Mehnert M., Hossain M., Steinmann P.:
    A complete thermo-electro-viscoelastic characterization of dielectric elastomers, Part II: Continuum modeling approach
    In: Journal of the Mechanics and Physics of Solids 157 (2021), S. 104625
    ISSN: 0022-5096
    DOI: 10.1016/j.jmps.2021.104625
  • Yamamoto R., Hegendörfer A., Mergheim J., Kakimoto KI.:
    Vibration energy harvesting and internal electric potential of (Na,K)NbO3/polyimide piezoelectric composites
    In: Japanese Journal of Applied Physics 60 (2021)
    ISSN: 0021-4922
    DOI: 10.35848/1347-4065/ac1c3e

2020

  • Hasegawa R., Mehnert M., Mergheim J., Steinmann P., Kakimoto K.:
    Behavior of vibration energy harvesters composed of polymer fibers and piezoelectric ceramic particles
    In: Sensors and Actuators A-Physical 303 (2020), Art.Nr.: 111699
    ISSN: 0924-4247
    DOI: 10.1016/j.sna.2019.111699
Energy Conversion Systems: From Materials to Devices (IGK 2495)
Institute of Glass and Ceramics (FAU)

Martensstr. 5
91058 Erlangen
Germany
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Twitter
  • RSS Feed
Nach oben